Esta é a segunda disciplina que estou cursando na graduação em Computer Science na Oregon State University. Reproduzo aqui alguns links etc.
Bibliografia requerida
Discrete Mathematics with Applications (4th Edition), Susanna S. Epp.
Bibliografia sugerida
Discrete Mathematics and Its Applications (7th Edition), Kenneth Rosen.
Using the Equation Editor In Microsoft Word 2010
Revisão para o curso:
Types of numbers and their properties
Associative, commutative and distributive properties of number
Factoring polynomials (mainly quadratics)
Algebraic formulas (binomial theorems (squares and cubes), difference of squares etc. )
Factorial
Laws of exponents
Laws of fractional exponents
Arithmetic and geometric progressions
Inequalities
Símbolos lógicos:
≥ ≤ ≠ ¬ ∧ ∨ ⊕ ≡ → ↔ ∃ ∀ (pode-se usar tanto ~ quanto ¬ como símbolo negativo)
Translations in Monadic Predicate Logic – capítulo 6 de Hardegree, Symbolic Logic
Sugestão de leitura: Gödel, Escher, Bach: um entrelaçamento de Gênios Brilhantes
Mathematical proof
List of types of numbers
Natural numbers (N): {0, 1, 2, 3, …}
Integers (Z) {…, −3, −2, −1, 0, 1, 2, 3, …}
Rational numbers (Q): numbers that can be expressed as a ratio of an integer to a non-zero integer
Irrational numbers (I): real numbers that are not rational; among irrational numbers are the ratio π of a circle’s circumference to its diameter, Euler’s number e, the golden ratio φ, and all square roots of natural numbers, other than of perfect squares
Real numbers (R): includes all the rational and irrational numbers